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Abstract 

Federal Statistical Agencies are required to produce estimates of subpopulation 

parameters. Because the number of sample survey observations within a subpopulation 

tends to become small as the size of the subpopulation decreases, traditional design-based 

estimates based on only sample survey data from subpopulations are often unreliable. For 

over forty years, the Fay-Herriot model has been widely used to produce reliable small 

area statistics. This model develops predictions of small areas of interest based on a linear 

regression of the response of interest on auxiliary variables. For the Fay-Herriot model, 

the response variable is assumed to be normally distributed, and the random effects 

associated with various levels of geography and sampling errors are assumed to be 

independent, normally distributed random variables with a mean of zero and an unknown 

variance. The Fay-Herriot model is sensitive to outliers because the outliers may result in 

overestimation of the model variance. In this talk, we propose a new robust estimation 

approach to estimate small area populations. The robustness property is achieved by 

replacing the standard normality assumption of the model errors by a mixture of two 

normal distributions with different variances, making this mixture model less sensitive to 

outliers. Finally, we compare the estimates from the proposed mixture model to 

alternative existing methods using a data set from the Cash Rents Survey conducted by 

the United States Department of Agriculture’s (USDA’s) National Agricultural Statistics 

Service (NASS). 
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1. Introduction 

 

The motivation behind the mixture model is that the available data may include 

unobserved subgroups and, by incorporating such structure in the model, we could obtain 

more accurate predictions. In statistics, a mixture model is a probabilistic model for 

representing the presence of subpopulations within an overall population, without 

requiring that an observed data set should identify the subpopulation to which an 

individual observation belongs. 

 

Sample surveys are used to collect useful data from the population and estimate various 

population characteristics from the sample. The sample should be representative of the 

population, ideally with participants selected at random from the target population. 
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Because results tend to vary with samples, it is necessary to quantify the sampling error 

or variation that exists among estimates from different samples. 

 

In this section, we introduce area-level model for small area problem and briefly review 

the Fay-Herriot model proposed by Fay and Herriot (1979) in the small area estimation. 

We propose a new mixture model in Section 2 to relax the model error in the linking 

equation and write out the Maximum Likelihood Estimation (MLE) of parameters. In 

Section 3, we develop EM algorithm for the Maximum Likelihood Estimation. We apply 

proposed mixture model with EM algorithm on the Cash Rents Survey in Section 4. 

Finally, we discuss future research on the mixture model. 

 

1.1 Small area problem 

Surveys are usually designed to have enough samples at the state or national level to 

produce reliable design-based estimates with a desired level of precision. When 

estimating areas/domains, a problem may arise because the sample size may not be large 

enough for reliable design-based estimates. The problem of estimation at such detailed 

levels with inadequate or no sample is known as the small area estimation (SAE) problem 

(Rao and Molina, 2005).  

 

Any improvement of the direct small area estimator without collecting additional new 

data requires certain implicit or explicit modelling assumptions. It is common to 

encounter situations where a reasonable working model can be found to explain the bulk 

of the data. However, a handful of data points may not fit the model, adversely affecting 

estimation of the model parameters and hence the small area parameters. This calls for 

development of an estimation method that is robust to the occurrence of outliers or 

misspecification of modelling assumptions. 

 

SAE methods combine and borrow strength from multiple data sources, such as surveys, 

census, administrative data, and the choice usually depends on the parameter being 

estimated and data sources available. They yield estimates that remain reliable even when 

disaggregated at levels, or “small areas”, for which the survey was not originally 

designed to provide reliable estimates. 

 

Consider the basic area model for the small area problem, 

{
𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖              − 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝜃𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑣𝑖          − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

                       (1) 

where 𝑦𝑖 is a direct design-based estimate, 𝜃𝑖 is true area parameter, 𝑒𝑖 is sampling error, 

𝑒𝑖~𝑁(0, 𝐷𝑖), 𝑖 = 1,2, ⋯ 𝑛,  𝐷𝑖 is known and positive. 𝑦𝑖 and 𝐷𝑖 are directly obtained from 

sample estimates. In the linking equation, 𝑥𝑖 is a vector of covariates, and 𝑣𝑖 is model 

error. 

 

1.2 Background on Fay-Herriot model 

Fay and Herriot (1979) proposed model (Equation 1) to develop estimates of small area 

means based on direct survey estimates (𝑦𝑖) and synthetic regression estimates computed 

from auxiliary variables (𝑥𝑖). Their model, which is essentially a mixed linear model, is 

widely known as the Fay-Herriot model in the small area estimation literature. In the 

standard Fay-Herriot model, it is assumed that the model errors (𝑣𝑖’s) are identically 



distributed with a common normal distribution with mean zero and an unknown variance, 

that is, 𝑣𝑖~𝑁(0, 𝜎2). The model parameters are 𝛽 and 𝜎2.  

 

We need to estimate model parameters: (𝛽, 𝜎2). The best predictor of 𝜃𝑖 under squared 

error loss is the conditional expectation given by 

𝐸(𝜃𝑖|𝑦𝑖) = 𝛾𝑖𝑦𝑖 + (1 − 𝛾𝑖)𝑥𝑖
𝑇𝛽 

where 𝛾𝑖 = 𝜎2 (𝜎2 + 𝐷𝑖)⁄  is known as a shrinkage coefficient. Under the area model, the 

marginal distribution of 𝑦𝑖 is 𝑁(𝑥𝑖
𝑇𝛽, 𝜎2 + 𝐷𝑖), and 𝛽 can be estimated for a given 𝜎

2
 by 

generalized least squares (GLS) estimator given by 

𝛽̂𝐺𝐿𝑆 = (∑
𝑥𝑖𝑥𝑖

𝑇

𝜎2 + 𝐷𝑖

𝑛

𝑖=1

)

−1

(∑
𝑥𝑖𝑦𝑖

𝜎2 + 𝐷𝑖

𝑛

𝑖=1

) 

By replacing 𝛽 with 𝛽̂𝐺𝐿𝑆, we obtain the following best linear unbiased predictor (BLUP) 

of 𝜃𝑖: 

𝜃̃𝑖 = 𝛾𝑖𝑦𝑖 + (1 − 𝛾𝑖)𝑥𝑖
𝑇𝛽̂𝐺𝐿𝑆 

 

1.3 Estimating the model parameters 

In practice, the random effects variance 𝜎2 is unknown and should be replaced in 𝛾𝑖 and 

𝛽̂𝐺𝐿𝑆 by a sample estimate, which yields the empirical BLUP in the frequentist’s 

framework, or the empirical Bayes estimator in the Bayesian framework. To estimate 𝜎2
, 

we will consider the following approaches: 

• Maximum likelihood estimator based on the marginal distribution of 𝑦𝑖 

• Restricted maximum likelihood estimator and moment-type estimators 

• Hierarchical Bayes (HB) approach by assigning prior distributions on unknown 

parameters 𝛽 and 𝜎2, and compute a posterior distribution of 𝜃𝑖 

• Log transformed data.  

 

From the Fay-Herriot small area model, we are able to estimate (𝛽, 𝜎2) as (𝛽̂, 𝜎̂2). The 

two major methods of parameter estimation for process models are maximum likelihood 

and least squares. Both methods provide parameter estimators that have good properties. 

However, both maximum likelihood and least squares are sensitive to the presence of 

outliers.  

 

 

2. Mixture Model 

 

2.1 Model misspecification or the presence of outliers 

The motivation for the proposed model is to develop estimators when the model is 

misspecified or outliers are present. The Fay-Herriot assumption on the model errors is 

found to be restrictive in many applications (Lahiri and Rao, 1995; Datta and Lahiri, 

1995). To relax the distributional assumption, we assume that the 𝑣𝑖’s are identically 

distributed, and the common distribution is a mixture of two normal distributions. We 

propose a model by changing the distribution of the model error, 𝑣𝑖,  from normal to a 

mixture of two normal,  



{

𝑣𝑖|𝑧𝑖 = 1 ~ 𝑁(0, σ2)  

𝑣𝑖|𝑧𝑖 = 0 ~ 𝑁(0, ρσ2)

𝑧𝑖|𝑝 ~ 𝐵𝑒𝑟(𝑝)

                            (2) 

where the mixture indicator (𝑧𝑖) is a Bernoulli variable and 0 < 𝜌 < 1. That is, when 

𝑧𝑖 = 1, the 𝑣𝑖  follows the normal distribution with larger variability, which 

accommodates the outliers.  

 

Now, model parameters have changed from (𝛽, 𝜎2) in the Fay-Herriot model to Φ =
{β, 𝜎2, 𝜌,  p}. We will consider the maximum likelihood approach to estimate Φ from the 

complete dataset: (𝑌, 𝑍, 𝑉) where 𝑌 is estimated from the survey, and (𝑍, 𝑉) are the 

unobserved latent variables.  

 

2.2 Maximum Likelihood Estimation of Parameters 

The complete likelihood function is the joint density of (𝑌,  𝑍,  𝑉), which is given by 

 

𝐿(𝜙; 𝑌, 𝑉, 𝑍) = ∏ 𝑓(𝑦𝑖|𝑣𝑖)𝑛
𝑖=1 𝑓(𝑣𝑖|𝑧𝑖)𝑓(𝑧𝑖)                           (3) 

where 𝑓(𝑦𝑖|𝑣𝑖) =
1

√2𝜋𝐷𝑖
𝑒𝑥𝑝 [−

(𝑦𝑖−𝑥𝑖
𝑇𝛽−𝑣𝑖)

2

2𝐷𝑖
], 𝑓(𝑣𝑖|𝑧𝑖) =

[𝑁(𝑣𝑖|0, 𝜎2)]𝑧𝑖[𝑁(𝑣𝑖|0, 𝜌𝜎2)](1−𝑧𝑖), and 𝑓(𝑧𝑖) = 𝑝𝑧𝑖(1 − 𝑝)1−𝑧𝑖.   

 

Then the likelihood function is 

𝐿(𝜙; 𝑌, 𝑉, 𝑍) = ∏{𝑁(𝑦𝑖|𝑥𝑖
𝑇𝛽 + 𝑣𝑖 , 𝐷𝑖)

𝑛

𝑖=1

(𝑝𝑁(𝑣𝑖|0, 𝜎2))
𝑧𝑖

((1 − 𝑝)𝑁(𝑣𝑖|0, 𝜌𝜎2))
1−𝑧𝑖} 

The log-likelihood function for the complete data is given by 

𝑙(𝜙; 𝑌, 𝑉, 𝑍) = ln[𝐿(𝜙; 𝑌, 𝑉, 𝑍)] 

=  constant - ∑
(𝑦𝑖−𝑥𝑖

𝑇𝛽−𝑣𝑖)
2

2𝐷𝑖
+𝑛

𝑖=1 ∑ 𝑧𝑖 (𝑙𝑜𝑔(𝑝) −
1

2
𝑙𝑜𝑔(2𝜋𝜎2) −

𝑣𝑖
2

2𝜎2)𝑛
𝑖=1 +

∑ (1 − 𝑧𝑖) (𝑙𝑜𝑔(1 − 𝑝) −
1

2
𝑙𝑜𝑔(2𝜋𝜌𝜎2) −

𝑣𝑖
2

2𝜌𝜎2)𝑛
𝑖=1                    (4) 

 

 

3. EM algorithm for Maximum Likelihood Estimation 

 

3.1 EM algorithm 

Consider the maximum likelihood approach to estimate model parameters: Φ =
{β, 𝜎2, 𝜌,  p}. In mixture models, the likelihood functions are usually too complicated to 

deal with via standard maximization. The EM algorithm, recommended by Dempster et 

al. (1977), is effective and popular for maximizing likelihood function for mixture 

models. In the EM terminology, the observed data 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)𝑇 is referred to as 

the incomplete data. If the unobserved latent variables 𝑧1, 𝑧2, ⋯ , 𝑧𝑛, 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 are 

available, we can write down the log-likelihood function for the complete data 

𝑦1, 𝑦2, ⋯ , 𝑦𝑛, 𝑧1, 𝑧2, ⋯ , 𝑧𝑛, 𝑣1, 𝑣2, ⋯ , 𝑣𝑛. 

 



E-step: Given the current parameter 𝜙(𝑡) and observed data Y, compute the expectation 

of 𝑙(𝜙; 𝑌, 𝑉, 𝑍) on the joint density function of (𝑉, 𝑍) 

𝑄(𝜙; 𝜙(𝑡), 𝑌) = 𝐸(𝑉,𝑍)(𝑙(𝜙; 𝑌, 𝑉, 𝑍)|𝜙(𝑡), 𝑌) = 𝐸𝑍{𝐸𝑉[𝑙(𝜙; 𝑌, 𝑉, 𝑍)|𝜙(𝑡), 𝑌, 𝑍]|𝜙(𝑡), 𝑌} 

Note that: 

𝜐𝑖|𝑦𝑖 , 𝑧𝑖 ,  𝜙(𝑡) ∼ 𝑁 ((
1

𝐷𝑖
+

𝑧𝑖

𝜎2(𝑡) +
1− 𝑧𝑖

𝜎2(𝑡)
𝜌(𝑡)

)
−1

𝑦𝑖−𝑥𝑖
𝑇𝛽(𝑡)

Di
, (

1

𝐷𝑖
+

𝑧𝑖

𝜎2(𝑡) +
1− 𝑧𝑖

𝜎2(𝑡)
𝜌(𝑡)

)
−1

). 

So, we need to calculate 𝐸𝑉|𝑍(𝜐𝑖|𝑌, 𝑧𝑖 ,  𝜙(𝑡)) and 𝐸𝑉|𝑍(𝜐𝑖
2|𝑌, 𝑧𝑖 ,  𝜙(𝑡)) for 

𝐸𝑉|𝑍[𝑙(𝜙; 𝑌, 𝑉, 𝑍)|𝜙(𝑡), 𝑌, 𝑍]:  

1. 𝐸𝑉|𝑍(𝜐𝑖|𝑌, 𝑧𝑖 ,  𝜙(𝑡)) = (
1

𝐷𝑖
+

𝑧𝑖

𝜎2(𝑡) +
1− 𝑧𝑖

𝜎2(𝑡)
𝜌(𝑡)

)
−1

𝑦𝑖−𝑥𝑖
𝑇𝛽(𝑡)

Di
≜ 𝑅1(𝑧𝑖; 𝑦𝑖 , 𝜙(𝑡)) 

2. 𝐸𝑉|𝑍(𝜐𝑖
2|𝑌, 𝑧𝑖,  𝜙(𝑡)) = (

1

𝐷𝑖
+

𝑧𝑖

𝜎2(𝑡) +
1− 𝑧𝑖

𝜎2(𝑡)
𝜌(𝑡)

)
−1

+ [𝐸𝑉(𝜐𝑖|𝑌, 𝑧𝑖,  𝜃(𝑡))]
2

≜

𝑅2(𝑧𝑖; 𝑦𝑖 , 𝜙(𝑡)) 

 

The conditional probability of 𝑍𝑖 given 𝑦𝑖 and 𝜙(𝑡) is  

𝑃[𝑍𝑖 = 𝑧𝑖 ∣ 𝑌 = 𝑦𝑖 , 𝜙(𝑡)] =
𝑝(𝑡)𝑧𝑖

(1 − 𝑝(𝑡))1−𝑧𝑖𝑁 (𝑦𝑖 ∣ 𝑥𝑖
T𝛽(𝑡), 𝐷𝑖 + 𝜎2(𝑡)

𝜌(𝑡)(1−𝑧𝑖)
)

𝑝(𝑡)𝑁 (𝑦𝑖|𝑥𝑖
𝑇𝛽(𝑡), 𝐷𝑖 + 𝜎2(𝑡)

) + (1 − 𝑝(𝑡))𝑁 (𝑦𝑖|𝑥𝑖
𝑇𝛽(𝑡), 𝐷𝑖 + 𝜌(𝑡)𝜎2(𝑡)

)

= 𝜋𝑖(𝑧𝑖; 𝑦𝑖 , 𝜙(𝑡))

 

with 𝜋𝑖(0; 𝑦𝑖 , 𝜙(𝑡)) + 𝜋𝑖(1; 𝑦𝑖 , 𝜙(𝑡)) = 1.  

Let  

𝑄(𝜙; 𝜙(𝑡), 𝑌) = constant − ∑
(𝑦𝑖 − 𝑥𝑖

𝑇𝛽 )
2

2𝐷𝑖

𝑛

𝑖=1

+ ∑ [𝑙𝑛(1 − 𝑝) −
1

2
𝑙𝑛(𝜌𝜎2)]

𝑛

𝑖=1

+ ∑ 𝜋𝑖(1; 𝑦𝑖 , 𝜙(𝑡))

𝑛

𝑖=1

[𝑙𝑛(𝑝) − 𝑙𝑛(1 − 𝑝) +
1

2
𝑙𝑛(𝜌)]

− ∑
(𝑦𝑖 − 𝑥𝑖

𝑇𝛽 )
2

𝐷𝑖

𝑛

𝑖=1

𝑅3(𝑦𝑖, 𝜙(𝑡))

−
1

2
∑ (

1

𝐷𝑖
+

1

𝜎2
)

𝑛

𝑖=1

𝑅2(𝑧𝑖 = 1; 𝑦𝑖 , 𝜙(𝑡))𝜋𝑖(1; 𝑦𝑖 , 𝜙(𝑡))

−
1

2
∑ (

1

𝐷𝑖
+

1

𝜌𝜎2
)

𝑛

𝑖=1

𝑅2(𝑧𝑖 = 0; 𝑦𝑖 , 𝜙(𝑡))𝜋𝑖(0; 𝑦𝑖 , 𝜙(𝑡)) 

where 𝑅3(𝑦𝑖 , 𝜙(𝑡)) = 𝑅1(𝑧𝑖 = 1; 𝑦𝑖 , 𝜙(𝑡))𝜋𝑖(1; 𝑦𝑖 , 𝜙(𝑡)) + 𝑅1(𝑧𝑖 =

0; 𝑦𝑖 , 𝜙(𝑡))𝜋𝑖(0; 𝑦𝑖 , 𝜙(𝑡)).  

 

M-step: Update 𝜙 by 

𝜙(𝑡+1) = 𝑎𝑟𝑔 max
𝜙

𝑄(𝜙; 𝜙(𝑡), 𝑌) 



So, we need to calculate 𝛽(𝑡+1), 𝑝(𝑡+1), 𝜎2(𝑡+1)
,  𝑎𝑛𝑑 𝜌(𝑡+1). 

1. 
𝜕𝑄(𝜙;𝜙(𝑡),𝑌)

𝜕𝛽
= 0 ⇒ 𝛽̂(𝑡+1) = (∑

𝑥𝑖𝑥𝑖
𝑇

𝐷𝑖

𝑛
𝑖=1 )

−1

∑
𝑥𝑖

𝑇[𝑦𝑖−𝑅3(𝑦𝑖,𝜙(𝑡))]

𝐷𝑖

𝑛
𝑖=1  

2. 
𝜕𝑄(𝜙;𝜙(𝑡),𝑌)

𝜕𝑝
= 0 ⇒  𝑝̂(𝑡+1) =

1

𝑛
∑ 𝜋𝑖(1; 𝑦𝑖 , 𝜙(𝑡))𝑛

𝑖=1  

3. {

𝜕𝑄(𝜙;𝜙(𝑡),𝑌)

𝜕𝜎2  = 0

𝜕𝑄(𝜙;𝜙(𝑡),𝑌)

𝜕𝜌
 = 0

⇒ {
𝜎̂2(𝑡+1)

 =
∑ 𝑅2(𝑧𝑖=1;𝑦𝑖,𝜙(𝑡))𝜋𝑖(1;𝑦𝑖,𝜙(𝑡))𝑛

𝑖=1

∑ 𝜋𝑖(1;𝑦𝑖,𝜙(𝑡))𝑛
𝑖=1

𝜌̂(𝑡+1) =
∑ 𝑅2(𝑧𝑖=0;𝑦𝑖,𝜙(𝑡))𝜋𝑖(0;𝑦𝑖,𝜙(𝑡))𝑛

𝑖=1

∑ 𝜋𝑖(0;𝑦𝑖,𝜙(𝑡))𝑛
𝑖=1

1

𝜎̂2(𝑡+1)

 

 

3.2 Empirical best predictor 

For EM algorithm calculations, define the initial value, 𝜙(0), for model parameters Φ. Let 

𝛽(0) = 𝛽̂, (𝜎2)(0) = 𝜎̂2, 𝑝(0) = .5, and 𝜌(0) = .5, where 𝛽̂ and 𝜎̂2 are derived from the 

Fay-Herriot model.  

 

For known model parameters Φ = (𝛽, 𝑝, 𝜎2, 𝜌), the best predictor of 𝜃𝑖 is 

𝜃̃𝑖,B(𝜙) = 𝑥𝑖
Tβ + 𝜋𝑖(1; 𝑦𝑖 , 𝜙)

𝜎2

𝜎2 + 𝐷𝑖
(𝑦𝑖 − 𝑥𝑖

T𝛽) + 𝜋𝑖(0; 𝑦𝑖 , 𝜙)
𝜌𝜎2

𝜌𝜎2 + 𝐷𝑖
(𝑦𝑖 − 𝑥𝑖

T𝛽) 

The empirical best predictor of 𝜃𝑖 is 

𝜃̂𝑖,𝐸𝐵 = 𝜃̃𝑖,𝐵(𝜙̂) 

where 𝜙̂ is the estimator of 𝜙 = (𝛽, 𝑝, 𝜎2, 𝜌). 

 

The mean square error for 𝜃𝑖,𝐸𝐵 is  

𝑀𝑆𝐸(𝜃𝑖,𝐸𝐵) = 𝐸 (𝜃𝑖,𝐸𝐵 − 𝜃𝑖)
2

= 𝐸 (𝜃̃𝑖,𝐵(𝜙) − 𝜃𝑖)
2

+  𝑔𝑖(𝜙) + 𝑜(𝑛−1)  

where 𝑔𝑖(𝜙) = 𝑂(𝑛−1). That is,  

𝑀𝑆𝐸(𝜃𝑖,𝐸𝐵)=𝐸 [𝑔̃𝑖1(𝑦𝑖, 𝜙)] +  𝑔𝑖(𝜙) + 𝑜(𝑛−1) =  𝑔𝑖1(𝜙) + + 𝑔𝑖(𝜙) + 𝑜(𝑛−1) 

and 

𝑔̃𝑖1(𝑦𝑖, 𝜙) = 𝐸 (𝜃̃𝑖,𝐵(𝜙) − 𝜃𝑖)
2

= 𝜋𝑖(1; 𝑦𝑖 , 𝜃(𝑡))
σ2Di

σ2+Di
+ 𝜋𝑖(0; 𝑦𝑖 , 𝜃(𝑡))

ρσ2Di

ρσ2+Di
+

𝜋𝑖(1; 𝑦𝑖 , 𝜃(𝑡)) 𝜋𝑖(0; 𝑦𝑖 , 𝜃(𝑡))(𝑦𝑖 −  𝑥𝑖
𝑇β)2 [

σ2

σ2+Di
−

ρσ2

ρσ2+Di
]

2

.  

Note that, 𝑔𝑖1(𝜙) and 𝑔𝑖(𝜙) are unknown.  

 

3.3 Bootstrapping method  

To estimate 𝛷̂,  we generate: 

1. zi1
∗ : 𝑃(zi1

∗ = 1) =  𝑝̂ = 1 − 𝑃(zi1
∗ = 0); 

2. 𝜐𝑖1
∗ ,   𝜐𝑖2

∗ :   𝜐𝑖1
∗  ~ 𝑁(0,  σ̂2) and 𝜐𝑖2

∗  ~ 𝑁(0,  ρ̂σ̂2), then 𝜐𝑖
∗ = zi1

∗ 𝜐𝑖1
∗ + (1 − zi2

∗ )𝜐𝑖2
∗  

and 𝜃𝑖
∗ = 𝑥𝑖

𝑇β̂ + 𝜐𝑖
∗ 

3. 𝑒𝑖
∗ ~ 𝑁(0,  𝐷𝑖) and compute 𝑦𝑖

∗ =  𝜃𝑖
∗ + 𝑒𝑖

∗,  and 𝑔̃𝑖1(𝑦𝑖
∗,𝜙̂). 



 

Based on 𝑦𝑖
∗ and 𝜃𝑖

∗,  𝑖 = 1,  … , 𝑛,  we obtain 𝜃𝑖,𝐸𝐵
∗ . Repeat this procedure F times: {𝜃𝑖,𝑓

∗ , 

𝑦𝑖,𝑓
∗ ,   𝜃𝑖,𝐸𝐵,𝑓

∗ , 𝜙̂𝑓
∗,  𝑓 = 1, … ,  𝐹}.  

𝑀𝑖1 =
1

𝐹
∑(𝜃𝑖,𝐸𝐵,𝑓

∗

𝐹

𝑓=1

− 𝜃𝑖,𝑓
∗ )2,   𝑔𝑖1,𝑏𝑜𝑜𝑡 =  

1

𝐹
∑ 𝑔̃𝑖1(𝑦𝑖,𝑓

∗ , 𝜙̂𝑓
∗).

𝐹

𝑓=1

  

𝑀𝑖1 − 𝑔𝑖1,𝑏𝑜𝑜𝑡 + 𝑔̃𝑖1(𝑦𝑖 , 𝜙̂) is an approximate estimator of 𝑀𝑆𝐸(𝜃𝑖,𝐸𝐵) =

𝑔𝑖1(𝜙) +  𝑔𝑖(𝜙) + 𝑜(𝑛−1). 

 

 

4. Application - Cash Rents Survey 

 

4.1 Case study 

The Cash Rents Survey is conducted on an annual basis by the United States Department 

of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS). The survey 

obtains cash rental rates from a representative sample of farmers and ranchers in the 

United States, excluding Alaska. This survey provides the basis for estimates of the 

current year’s cash rents paid for irrigated cropland, non-irrigated cropland, and 

permanent pastureland.  From the Cash Rents Survey, county, state, and national rental 

rates (dollars/acre) for each land-use category (irrigated, non-irrigated, and pasture) are 

published (see Figure 1 for the 2020 county-level published cash rental rate estimates for 

irrigated land). Estimates of cash rental rates are useful to farmers, economists, and 

policy makers. 

 

 
Figure 1: The 2020 county-level published cash rental rate official estimates for irrigated 

land  

 

4.2 Sample design and design weights 



The objective for Cash Rents Survey is to estimate rental acres, cash rents, and cash 

rental rates at the county level by land types: irrigated cropland, non-irrigated cropland, 

and pasture. The target population is the set of all U.S. (excluding Alaska) farms that rent 

land for cash during the reference year. The sampled population is a NASS-developed 

and maintained list frame of U.S. farms that rent land for cash. A stratified systematic 

sample design is drawn for the Cash Rents Survey. For a given state, we first stratify by 

county and next stratify by 10 general strata within each county. Then, we take a 

systematic sample from each stratum. Stratified sampling does not generate weight. It 

divides the full population into subpopulation. For a systematic sample, the sampling 

interval is the design weight for each unit (farm). The table below (see Table 1 for 

stratified systematic sample design for Cash Rents Survey) is a systematic sample from 

10 general strata for each county.  

Stratified random sampling is a probability sampling technique in which the total 

population is divided into strata to complete the sampling process. Design weight for cash 

rents survey is from a systematic sample design. The weight is equal to the sample 

interval.  

Table 1: Stratified systematic sample design for Cash Rents Survey 

Strata Description Sampling Interval  

98 Irrigated Cropland Acres > 10 % of total 1 

96 Pasture Acres > 10% of total 1 

94 Non-Irrigated Cropland Acres > 10% of total 1 

92 Rent Paid for Land and Buildings > 10% of total 1 

90 Irrigated Cropland Acres 1 

80 Pasture Acres 2 

70 Non-Irrigated Cropland Acres 2 

60 Rent Paid for All Land and Buildings 3 

50 Unknown Cash Rent Expenses 1 

40 Land Rented or Leased from Others 40 

 

Remark: when sampling interval is equal to 1, this stratum is a certainty stratum,  that is, 

we select all farms in the stratum for survey.   

4.3 Mixture model for cash rent survey 

Realized sample sizes at the county level are often too small to support reliable direct 

estimates. In addition, outlier issues exist in some states. We conduct an exploratory data 

analysis in each state for different land types. It is important to check the distributions of 

survey estimates before fitting models. A density plot of the county-level 2020 California 

survey’s direct estimates for irrigated land (see Figure 2) shows that the distribution is 

not unimodal but multimodal. A mixture of two components shows a good and 

parsimonious fit of the data based on the plot. Therefore, in this case study, we use the 

mixture modeling approach to accommodate the fit of multimodal distribution based on 

the model proposed in Section 2.  



 
Figure 2: Density plot of the county-level 2020 California survey estimates for irrigated 

land 

 

𝑥𝑖 are the covariates used in the model and include an intercept, the corresponding 

previous year county-level official estimates, the number of positive responses in the 

county, and the county-level National Commodity Crop Productivity Indices (NCCPIs). 

NCCPIs, which measure the quality of the soil for growing non-irrigated crops in climate 

conditions best suited for various crops.  

 

To check the performance of the mixture model, we conduct the comparisons among 

mixture model (Mix), Fay-Herriot (FH) model, the published estimates, and the survey 

estimates. The Fay-Herriot model has the assumption that the distribution of the vi’s is 

unimodal, not multimodal.  

 

To evaluate the effectiveness of the estimator, we computed the following deviation 

measure for two model estimates and survey estimates from the NASS official statistics. 

The absolute relative deviation (ARD) is 

𝐴𝑅𝐷 (%) =  100 ×
|𝑦𝑖

𝑝𝑢𝑏
− 𝜃𝑖|

𝑦𝑖
𝑝𝑢𝑏 ,  

where 𝑦𝑖
𝑝𝑢𝑏

 is the published estimates and 𝜃𝑖 is the best empirical predictor from a 

model. External evaluation of potential models can shed light on their usefulness. Note 

that the published estimates would not be available for the current year. However, they 

are appropriate for use in assessing the quality and reasonableness of model-based 

estimates at the research stage.  

 

The mixture model has a smaller mean and a smaller maximum ARD than the survey 

estimates and the FH model estimates, indicating that it more effectively accommodated 

the presence of outliers and the non-unimodal distribution (see Table 2). The maximum 

ARD represents the case for which an estimator is farthest from the published estimates. 

The maximum ARD for the mixture model estimates is almost 60% less than the survey 

estimates and 35% less than the FH model estimates. The minimum ARD represents the 

case for which the estimates are closest to the published estimates. The minimum ARD is 

smallest for the survey estimates. The FH estimates had the smallest median value of the 

ARD, and the mixture model had the smallest mean ARD. 

 



We now turn to an examination of the performance of the MSE estimators associated 

with the different estimates (Table 2). The MSE estimators for the mixture model are 

smaller than those for the survey and FH model estimates in all four summary measures.  

 

Table 2: ARD (%) and MSE (%) summary measures based on survey, Fay-Herriot model, 

and mixture model 
 ARD from Published Estimates (%) Mean Square Errors (%) 

Model Survey FH Mix Survey FH Mix 

Min 0.02 0.06 0.32 28.3 22.9 21.7 

Median 12.5 9.68 10.7 4192.6 874.6 805.1 

Mean 23.0 18.4 17.9 32539.8 10418.1 9411.3 

Max 178.0 111.0 72.1 220107.1 93173.2 69625.5 

 

 

5. Future Research 

 

5.1 General mixture model  

Based on a density plot of the county-level 2020 California survey’s direct estimates for 

irrigated land (see Figure 2), the distribution of the vi’s does not follow a normal 

distribution or a mixture of two normal distributions. A mixture of K normal 

distributions, where 𝐾 > 2, provides a better fit for this common distribution. 

 

Assume that the 𝑣𝑖’s are independent and identically distributed random variables (iids), 

and the common distribution is a mixture of K normal distributions, with the kth 

component having mean 0 and variance 𝜎𝑘
2, and the mixing proportion 𝜋𝑘, 𝑘 =

1,2, ⋯ , 𝐾,  0 < 𝜋𝑘 < 1,  and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1, where K is a known positive integer. We 

represent the distribution structure of 𝑣𝑖 by 

𝑣𝑖 = ∑ 𝑧𝑖𝑘

𝐾

𝑘=1

𝑣𝑖𝑘 = 𝑧𝑖
𝑇𝑣𝑖

∗ 

where 𝑧𝑖 = (𝑧𝑖1, 𝑧𝑖2, ⋯ , 𝑧𝑖𝐾)𝑇~ Multinomial (1, 𝜋1, 𝜋2, ⋯ , 𝜋𝐾), and  𝑣𝑖
∗ =

(𝑣𝑖1, 𝑣𝑖2, ⋯ , 𝑣𝑖𝐾)𝑇~𝑀𝑉𝑁 (0, 𝐷𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, ⋯ , 𝜎𝐾
2)). It is also assumed that 𝑧𝑖 and 𝑣𝑖

∗ are 

independently distributed. Extending this work to the more general case would be useful. 

5.2 Measurement Error Model 

Ybarra and Lohr (2008) extend the area-level Fay-Herriot model to a measurement error 

model. The observed covariate is represented as the sum of a latent covariate and a mean 

zero measurement error. The measurement error in the covariate is uncorrelated with the 

sampling error in the response.  

 

In the Section 4, one of covariates is the corresponding previous year county-level 

official estimates. So, consideration should be given to adding an additional equation: 

𝑊𝑖 = 𝑥𝑖 + 𝑢𝑖, to the sampling equation and linking equation in eq. 1, where 𝑥𝑖 is 

unobserved covariate and 𝑊𝑖 is an estimate and observed. The resulting measurement 

error model is as follows:   



{

𝑦𝑖 = 𝜃𝑖 + 𝑒𝑖             − 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛    

𝜃𝑖 = 𝑥𝑖
𝑇𝛽 + 𝑣𝑖                − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑊𝑖 = 𝑥𝑖 + 𝑢𝑖           − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 

 

where the measurement error, 𝑢𝑖, is uncorrelated to model error, 𝑒𝑖. Their joint 

distribution is a multivariate normal distribution, that is, 

(𝑢𝑖
𝑇 , 𝑒𝑖)

𝑇
~𝑀𝑉𝑁(0, Ψ𝑖) 

where Ψ𝑖 = (
Ψ𝑢𝑢𝑖 Ψ𝑢𝑒𝑖

Ψ𝑢𝑒𝑖
𝑡 Ψ𝑒𝑒𝑖

).  

The parameter of interest for the problem is 𝜃𝑖 = 𝑦𝑖 − 𝑒𝑖, and model parameters (𝛽, 𝜎2) 

can be estimated though the empirical BLUP in the frequentist’s framework, or the 

empirical Bayes estimator in the Bayesian framework.  

 

Define observable quantity:  𝑏𝑖 = 𝑦𝑖 − 𝑊𝑖
𝑇𝛽. The best predictor of 𝜃𝑖 under squared error 

loss is 

𝜃̃𝑖 = 𝑦𝑖 − 𝑒̂𝑖 = 𝑦𝑖 − 𝐸(𝑒𝑖|𝑏𝑖). 
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